22 research outputs found

    Magnetic Flux Analysis for the Condition Monitoring of Electric Machines: A Review

    Full text link
    [EN] Magnetic flux analysis is a condition monitoring technique that is drawing the interest of many researchers and motor manufacturers. The great enhancements and reduction in the costs and dimensions of the required sensors, the development of advanced signal processing techniques that are suitable for flux data analysis, along with other inherent advantages provided by this technology are relevant aspects that have allowed the proliferation of flux-based techniques. This paper reviews the most recent scientific contributions related to the development and application of flux-based methods for the monitoring of rotating electric machines. Particularly, aspects related to the main sensors used to acquire magnetic flux signals as well as the leading signal processing and classification techniques are commented. The discussion is focused on the diagnosis of different types of faults in the most common rotating electric machines used in industry, namely: squirrel cage induction machines (SCIM), wound rotor induction machines (WRIM), permanent magnet machines (PMM) and wound field synchronous machines (WFSM). A critical insight of the techniques developed in the area is provided and several open challenges are also discussed.This work was supported by the Spanish 'Ministerio de Ciencia InnovaciĂłn y Universidades' and FEDER program in the framework of the "Proyectos de I+D de GeneraciĂłn de Conocimiento del Programa Estatal de GeneraciĂłn de Conocimiento y Fortalecimiento CientĂ­fico y Tecnologico del Sistema de I+D+i, Subprograma Estatal de Generacion de Conocimiento" reference PGC2018-095747-B-I00 and by the Consejo Nacional de Ciencia y TecnologĂ­a under CONACyT Scholarship with key code 2019-000037-02NACF. Paper no. TII-20-5308.Zamudio-RamĂ­rez, I.; Osornio-Rios, RA.; Antonino-Daviu, J.; Razik, H.; Romero-Troncoso, RDJ. (2022). Magnetic Flux Analysis for the Condition Monitoring of Electric Machines: A Review. IEEE Transactions on Industrial Informatics. 18(5):2895-2908. https://doi.org/10.1109/TII.2021.30705812895290818

    Exact LMS learning curve analysis under finite word length effects

    No full text
    A mathematical model for the LMS learning curve under finite word length effects is presented in this paper. The impact of the finite word length effects on the LMS adaptive filter is a major concern during its implementation because it has repercussions on both the convergence speed and the stability of the adaptive filter. Two typical cases of quantization, such as rounding and two’s complement truncation are considered. Explicit equations that allow to the designer accurately predict the behavior of the LMS learning curve under quantization errors are provided

    PID-Controller Tuning Optimization with Genetic Algorithms in Servo Systems

    No full text
    Performance improvement is the main goal of the study of PID control and much research has been conducted for this purpose. The PID filter is implemented in almost all industrial processes because of its well-known beneficial features. In general, the whole system's performance strongly depends on the controller's efficiency and hence the tuning process plays a key role in the system's behaviour. In this work, the servo systems will be analysed, specifically the positioning control systems. Among the existent tuning methods, the Gain-Phase Margin method based on Frequency Response analysis is the most adequate for controller tuning in positioning control systems. Nevertheless, this method can be improved by integrating an optimization technique. The novelty of this work is the development of a new methodology for PID control tuning by coupling the Gain-Phase Margin method with the Genetic Algorithms in which the micro-population concept and adaptive mutation probability are applied. Simulations using a positioning system model in MATLAB and experimental tests in two CNC machines and an industrial robot are carried out in order to show the effectiveness of the proposal. The obtained results are compared with both the classical Gain-Phase Margin tuning and with a recent PID controller optimization using Genetic Algorithms based on real codification. The three methodologies are implemented using software

    Spectral Kurtosis Based Methodology for the Identification of Stationary Load Signatures in Electrical Signals from a Sustainable Building

    No full text
    The increasing use of nonlinear loads in the power grid introduces some unwanted effects, such as harmonic and interharmonic contamination. Since the existence of spectral contamination causes waveform distortion that may be harmful to the loads that are connected to the grid, it is important to identify the frequency components that are related to specific loads in order to determine how relevant their contribution is to the waveform distortion levels. Due to the diversity of frequency components that are merged in an electrical signal, it is a challenging task to discriminate the relevant frequencies from those that are not. Therefore, it is necessary to develop techniques that allow performing this selection in an efficient way. This paper proposes the use of spectral kurtosis for the identification of stationary frequency components in electrical signals along the day in a sustainable building. Then, the behavior of the identified frequencies is analyzed to determine which of the loads connected to the grid are introducing them. Experimentation is performed in a sustainable building where, besides the loads associated with the normal operation of the building, there are several power electronics equipment that is used for the electric generation process from renewable sources. Results prove that using the proposed methodology it is possible to detect the behavior of specific loads, such as office equipment and air conditioning

    Power Quality Disturbance Tracking Based on a Proprietary FPGA Sensor with GPS Synchronization

    Get PDF
    The study of power quality (PQ) has gained relevance over the years due to the increase in non-linear loads connected to the grid. Therefore, it is important to study the propagation of power quality disturbances (PQDs) to determine the propagation points in the grid, and their source of generation. Some papers in the state of the art perform the analysis of punctual measurements of a limited number of PQDs, some of them using high-cost commercial equipment. The proposed method is based upon a developed proprietary system, composed of a data logger FPGA with GPS, that allows the performance of synchronized measurements merged with the full parameterized PQD model, allowing the detection and tracking of disturbances propagating through the grid using wavelet transform (WT), fast Fourier transform (FFT), Hilbert–Huang transform (HHT), genetic algorithms (GAs), and particle swarm optimization (PSO). Measurements have been performed in an industrial installation, detecting the propagation of three PQDs: impulsive transients propagated at two locations in the grid, voltage fluctuation, and harmonic content propagated to all the locations. The results obtained show that the low-cost system and the developed methodology allow the detection of several PQDs, and track their propagation within a grid with 100% accuracy
    corecore